

[image: fastjet]
 [https://github.com/scikit-hep/fastjet]Fastjet is a library for performing Jet-Finding within the Scikit-HEP ecosystem.
The library includes the classic interface, and a new interface built to perform clustering on multi-event Awkward Array objects.

Note

Any questions about the C++ library, the jet finding algorithms, etc. should be directed to fastjet.fr [http://fastjet.fr]. This page is meant to document the Python interfaces.

Documentation

	Python interface - This site.

	GitHub [https://github.com/scikit-hep/fastjet/]

Installation

fastjet can be installed from pypi [https://pypi.org/project/fastjet/] using pip:

pip install fastjet

Most users will get a precompiled binary (wheel) for your operating system and Python version. If not, the above attempts to compile from source.

The Interfaces

The fastjet library provides many options for the user to perform clustering on HEP data. The library has been designed keeping in mind the different requirements of users.

The fastjet library contains two interfaces within:

	The Awkward interface

	The Classic interface

The Awkward interface is the new interface made to handle multi-event data, whereas the classic interface is the same as the C++ library [http://fastjet.fr/], designed to handle the data in a particle-at-a-time fashion. The tutorials are divided into two to explain how each of the interfaces work. Please take a look at the tutorial section to get started.

Indices and tables

	Index

	Module Index

	Search Page

The Array Oriented Interface

The tutorial on this page describes how the user can use Awkward Arrays [https://awkward-array.org/quickstart.html] to perform clustering on the particle data.

Clustering Specification

The fastjet library has some clases specifically made to provide the different parameters for clustering. This includes the following classes :

	JetDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1JetDefinition.html]

	AreaDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1AreaDefinition.html]

	RangeDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1RangeDefinition.html]

For example, the JetDefinition class can be instantiated in the following way:

import fastjet
jetdef = fastjet.JetDefinition(fastjet.antikt_algorithm, 0.6)

The JetDefinition class takes varied number of arguments, the first argument is always the type of algorithm, the number of rest of the arguments depends on how many parameters the given algorithm requires.

The JetAlgorithms

The JetDefinition class takes JetAlgorithms [http://fastjet.fr/repo/doxygen-3.4.0/namespacefastjet.html#a6377b557cbb936d4046d2aa936170dc0] as arguments. In the above example we have chosen the Anti-kt algorithm. The list of algorithms is as following:

	ee_genkt_algorithm : The e+e- genkt algorithm (R > 2 and p=1 gives ee_kt)

	ee_kt_algorithm : The e+e- kt algorithm

	genkt_algorithm : Like the k_t but with distance measures dij = min(kti^{2p},ktj^{2p}) Delta R_{ij}^2 / R^2 diB = 1/kti^{2p} where p = extra_param()

	kt_algorithm : The longitudinally invariant kt algorithm

	cambridge_for_passive_algorithm : A version of cambridge with a special distance measure for particles whose pt is < extra_param(); This is not usually intended for end users, but is instead automatically selected when requesting a passive Cambridge area.

	cambridge_algorithm : The longitudinally invariant variant of the cambridge algorithm (aka Aachen algoithm).

	antikt_algorithm : Like the k_t but with distance measures dij = min(1/kti^2,1/ktj^2) Delta R_{ij}^2 / R^2 diB = 1/kti^2

	There are other algorithms mentioned do not work.

The Data

The input data for the Multi-event interface has to be an Awkward Array. One such example is as follows:

>>> import awkward as ak
>>> array = ak.Array(
... [
... {"px": 1.2, "py": 3.2, "pz": 5.4, "E": 2.5, "ex": 0.78},
... {"px": 32.2, "py": 64.21, "pz": 543.34, "E": 24.12, "ex": 0.35},
... {"px": 32.45, "py": 63.21, "pz": 543.14, "E": 24.56, "ex": 0.0},
...],
...)

The Awkward Array here is a Record Array of Lorentz Vectors.

Note

The inputs can be provided in more Awkward Array formats than described here.

ClusterSequence Class

After defining the JetDefinition class, the user can provide this instance to the ClusterSequence class as an argument, along with the input data to perform the clustering:

>>> cluster = fastjet.ClusterSequence(array, jetdef)
 <fastjet._pyjet.AwkwardClusterSequence object at 0x7f1413120a90>

Extracting Information

Any output that has to be an Array will be an Awkward Array in the array oriented interface. For example:

>>> cluster.inclusive_jets()
 <Array [{px: 1.2, py: 3.2, ... E: 48.7}] type='2 * Momentum4D["px": float64, "py...'>

Limitations

The Awkward Array interface is only available for the fastjet.ClusterSequence class. The Awkward Array functionality is likely to be expanded to other classes in the future.

The Object Oriented Interface

Clustering the data

The fastjet library provides many options for the user to perform clustering on HEP data. The library has been designed keeping in mind the different requirements of users. The basic clustering process is described below.

Clustering Specification

The fastjet library has some clases specifically made to provide the different parameters for clustering. This includes the following classes :

	JetDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1JetDefinition.html]

	AreaDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1AreaDefinition.html]

	RangeDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1RangeDefinition.html]

For example, the JetDefinition class can be instantiated in the following way:

import fastjet
jetdef = fastjet.JetDefinition(fastjet.antikt_algorithm, 0.6)

The JetDefinition class takes varied number of arguments, the first argument is always the type of algorithm, the number of rest of the arguments depends on how many parameters the given algorithm requires.

The JetAlgorithms

The JetDefinition class takes JetAlgorithms [http://fastjet.fr/repo/doxygen-3.4.0/namespacefastjet.html#a6377b557cbb936d4046d2aa936170dc0] as arguments. In the above example we have chosen the Anti-kt algorithm. The list of algorithms is as following:

	ee_genkt_algorithm : The e+e- genkt algorithm (R > 2 and p=1 gives ee_kt)

	ee_kt_algorithm : The e+e- kt algorithm

	genkt_algorithm : Like the k_t but with distance measures dij = min(kti^{2p},ktj^{2p}) Delta R_{ij}^2 / R^2 diB = 1/kti^{2p} where p = extra_param()

	kt_algorithm : The longitudinally invariant kt algorithm

	cambridge_for_passive_algorithm : A version of cambridge with a special distance measure for particles whose pt is < extra_param(); This is not usually intended for end users, but is instead automatically selected when requesting a passive Cambridge area.

	cambridge_algorithm : The longitudinally invariant variant of the cambridge algorithm (aka Aachen algoithm).

	antikt_algorithm : Like the k_t but with distance measures dij = min(1/kti^2,1/ktj^2) Delta R_{ij}^2 / R^2 diB = 1/kti^2

	There are other algorithms mentioned in the link that do not work.

The Data

The input for the classic interface is a list of PseudoJets. To use the classic interface here’s what the data should look like (This is a single event interface, one function call can only process one event):

>>> array = [fastjet.PseudoJet(1.1,1.2,1.3,1.4),
... fastjet.PseudoJet(2.1,2.2,2.3,2.4),
... fastjet.PseudoJet(3.1,3.2,3.3,3.4)]

ClusterSequence Class

After defining the JetDefinition class, the user can provide this instance to the ClusterSequence class as an argument, along with the input data to perform the clustering:

fastjet.ClusterSequence(inputs, jetdef)

Extracting Information

Any output that has to be an Array will be a list of PseudoJets if it’s particle data. For example:

>>> inc_jets = cluster.inclusive_jets()
>>> for elem in inc_jets:
... print("px:", elem.px(),"py:", elem.py(),"pz:", elem.pz(),"E:", elem.E(),)
px: 6.300000000000001 py: 6.6000000000000005 pz: 6.8999999999999995 E: 7.199999999999999

The Classic Interface classes

The documentation for the C++ Fastjet covers all the classes in fastjet. The python classes of the classic interface behave exactly like they do in C++, therefore we are providing a link to the respective doxygen pages:

	PseudoJet [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1PseudoJet.html]

	JetDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1JetDefinition.html]

	ClusterSequenceArea [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1ClusterSequence.html]

	AreaDefinition [http://fastjet.fr/repo/doxygen-3.4.0/classfastjet_1_1AreaDefinition.html]

	Every Other C++ Class (Almost all available through the classic interface) [http://fastjet.fr/repo/doxygen-3.4.0/annotated.html]

fastjet.ClusterSequence

	
class fastjet.ClusterSequence(data, jetdef)

	The base class for all clustering.

	Parameters:

	
	data (awkward.highlevel.Array) – The data for clustering.

	jetdef (fastjet._swig.JetDefinition) – The JetDefinition for clustering specification.

	
Q() → Array | float

	Returns the sum of all energies in the event (relevant mainly for e+e-)

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
Q2() → Array | float

	Return Q()^2

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
childless_pseudojets() → Array

	Return the list of pseudojets in the ClusterSequence that do not have children (and are not among the inclusive jets).

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
constituent_index(min_pt: float = 0) → Array

	Returns the index of the constituent of each Jet.

	Parameters:

	min_pt (float) – The minimum value of the pt for the inclusive jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
constituents(min_p: float = 0) → Array

	Returns the particles that make up each Jet.

	Parameters:

	min_pt (float) – The minimum value of the pt for the inclusive jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_dmerge(njets: int = 10) → Array | float

	Returns the dmin corresponding to the recombination that went from n+1 to n jets.

	Parameters:

	n_jets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_dmerge_max(njets: int = 10) → Array | float

	Returns the maximum of the dmin encountered during all recombinations up to the one that led to an n-jet final state.

	Parameters:

	n_jets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets(n_jets: int = -1, dcut: float = -1) → Array

	Returns the exclusive jets after clustering in the same format as the input awkward array. Either takes njets or dcut as argument.

	Parameters:

	
	n_jets (int) – The number of jets it was clustered to.

	dcut (float) – The dcut for the result.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets_constituents(njets: int = 10) → Array

	Returns the particles that make up each exclusive jet.

	Parameters:

	njets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets_constituents_index(njets: int = 10) → Array

	Returns the index of the constituent of each exclusive jet.

	Parameters:

	njets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets_energy_correlator(njets: int = 1, beta: int = 1, npoint: int = 0, angles: int = 0, alpha=0, func='generalized') → Array

	Returns the energy correlator of each exclusive jet.

	Parameters:

	
	njets (int) – The number of jets it was clustered to.

	n_point (int) – The number of points in the correlator.

	angle – The number of angles to be used in the correlator (if angle != n_point, ECFG is used).

	beta – The beta value for the correlator.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets_lund_declusterings(njets: int = 10) → Array

	Returns the Lund declustering Delta and k_T parameters from exclusive n_jets.

	Parameters:

	njets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_jets_ycut(ycut: float = -1) → Array

	Returns the exclusive jets after clustering in the same format as the input awkward array.

	Parameters:

	ycut (float) – The dcut for the result.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_subdmerge(data: Array, nsub: int = 0) → Array | float

	Returns the dij that was present in the merging nsub+1 -> nsub subjets inside this jet.

	Parameters:

	
	data (awkward.highlevel.Array) – An Awkward Array containing the Jets.

	n_sub (int) – The number of subjets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_subdmerge_max(data: Array, nsub: int = 0) → Array | float

	Returns the maximum dij that occurred in the whole event at the stage that the nsub+1 -> nsub merge of subjets occurred inside this jet.

	Parameters:

	
	data (awkward.highlevel.Array) – An Awkward Array containing the Jets.

	n_sub (int) – The number of subjets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_subjets(data: Array, dcut: float = -1, nsub: int = -1) → Array

	Returns an Awkward Array of all subjets of the current jet (in the sense of the exclusive algorithm) that would be obtained when running the algorithm with the given dcut.

	Parameters:

	
	data (awkward.highlevel.Array) – An Array containing the Jets.

	dcut (float) – The dcut for the result.

	n_sub (int) – The number of subjets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_subjets_up_to(data: Array, nsub: int = 0) → Array

	Returns the list of subjets obtained by unclustering the supplied jet down to nsub subjets (or all constituents if there are fewer than nsub).

	Parameters:

	
	data (awkward.highlevel.Array) – An Awkward Array containing the Jets.

	n_sub (int) – The number of subjets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_ymerge(njets: int = 10) → Array | float

	Returns the ymin corresponding to the recombination that went from n+1 to n jets.

	Parameters:

	n_jets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
exclusive_ymerge_max(njets: int = 10) → Array | float

	Same as exclusive_dmerge_max, but normalised to squared total energy.

	Parameters:

	n_jets (int) – The number of jets it was clustered to.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
get_child(data: Array) → Array

	If the jet has parents in the clustering, it returns them.

	Parameters:

	data (awkward.highlevel.Array) – An Array containing the Jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
get_parents(data: Array) → Array

	If the jet has parents in the clustering, it returns them.

	Parameters:

	data (awkward.highlevel.Array) – An Array containing the Jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
has_child(data: Array) → Array | bool

	If the jet has children in the clustering, it returns true.

	Parameters:

	data (awkward.highlevel.Array) – An Array containing the Jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
has_parents(data: Array) → Array | bool

	if the jet has parents in the clustering, it returns true.

	Parameters:

	data (awkward.highlevel.Array) – An Array containing the Jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
inclusive_jets(min_pt: float = 0) → Array

	Returns the inclusive jets after clustering in the same format as the input awkward array

	Parameters:

	min_pt (float) – The minimum value of the pt for the inclusive jets.

	Returns:

	Returns an Awkward Array of the same type as the input containting inclusive jets.

	Return type:

	awkward.highlevel.Array

	
jet_def() → JetDefinition

	Returns the Jet Definition Object associated with the instance

	Parameters:

	None –

	Returns:

	Returns the jetdefinition stored as an attribute.

	Return type:

	JetDefinition

	
jet_scale_for_algorithm(data: Array) → Array | float

	Returns the scale associated with a jet as required for this clustering algorithm (kt^2 for the kt-algorithm, 1 for the Cambridge algorithm).

	Parameters:

	data (awkward.highlevel.Array) – An Array containing the Jets.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
jets() → Array

	Allows the user to access the internally stored _jets() array, which contains both the initial particles and the various intermediate and final stages of recombination.

	Parameters:

	none –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
n_exclusive_jets(dcut: float = 0) → Array | int

	Returns the number of jets (in the sense of the exclusive algorithm) that would be obtained when running the algorithm with the given dcut.

	Parameters:

	dcut (float) – The dcut for the result.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
n_exclusive_subjets(data: Array, dcut: float = 0) → Array | int

	Returns the size of exclusive_subjets(…); still n ln n with same coefficient, but marginally more efficient than manually taking len(exclusive_subjets)

	Parameters:

	
	data (awkward.highlevel.Array) – An Array containing the Jets.

	dcut (float) – The dcut for the result.

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
n_particles() → Array | int

	Returns the number of particles that were provided to the clustering algorithm.

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

	
unclustered_particles() → Array

	Returns the unclustered particles after clustering in the same format as the input awkward array

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input contating the unclustered particles.

	Return type:

	awkward.highlevel.Array

	
unique_history_order() → Array

	Routine that returns an order in which to read the history such that clusterings that lead to identical jet compositions but different histories (because of degeneracies in the clustering order) will have matching constituents for each matching entry in the unique_history_order.

	Parameters:

	None –

	Returns:

	Returns an Awkward Array of the same type as the input.

	Return type:

	awkward.highlevel.Array

Index

 C
 | E
 | G
 | H
 | I
 | J
 | N
 | Q
 | U

C

 	
 	childless_pseudojets() (fastjet.ClusterSequence method)

 	ClusterSequence (class in fastjet)

 	
 	constituent_index() (fastjet.ClusterSequence method)

 	constituents() (fastjet.ClusterSequence method)

E

 	
 	exclusive_dmerge() (fastjet.ClusterSequence method)

 	exclusive_dmerge_max() (fastjet.ClusterSequence method)

 	exclusive_jets() (fastjet.ClusterSequence method)

 	exclusive_jets_constituents() (fastjet.ClusterSequence method)

 	exclusive_jets_constituents_index() (fastjet.ClusterSequence method)

 	exclusive_jets_energy_correlator() (fastjet.ClusterSequence method)

 	exclusive_jets_lund_declusterings() (fastjet.ClusterSequence method)

 	
 	exclusive_jets_ycut() (fastjet.ClusterSequence method)

 	exclusive_subdmerge() (fastjet.ClusterSequence method)

 	exclusive_subdmerge_max() (fastjet.ClusterSequence method)

 	exclusive_subjets() (fastjet.ClusterSequence method)

 	exclusive_subjets_up_to() (fastjet.ClusterSequence method)

 	exclusive_ymerge() (fastjet.ClusterSequence method)

 	exclusive_ymerge_max() (fastjet.ClusterSequence method)

G

 	
 	get_child() (fastjet.ClusterSequence method)

 	
 	get_parents() (fastjet.ClusterSequence method)

H

 	
 	has_child() (fastjet.ClusterSequence method)

 	
 	has_parents() (fastjet.ClusterSequence method)

I

 	
 	inclusive_jets() (fastjet.ClusterSequence method)

J

 	
 	jet_def() (fastjet.ClusterSequence method)

 	
 	jet_scale_for_algorithm() (fastjet.ClusterSequence method)

 	jets() (fastjet.ClusterSequence method)

N

 	
 	n_exclusive_jets() (fastjet.ClusterSequence method)

 	
 	n_exclusive_subjets() (fastjet.ClusterSequence method)

 	n_particles() (fastjet.ClusterSequence method)

Q

 	
 	Q() (fastjet.ClusterSequence method)

 	
 	Q2() (fastjet.ClusterSequence method)

U

 	
 	unclustered_particles() (fastjet.ClusterSequence method)

 	
 	unique_history_order() (fastjet.ClusterSequence method)

 nav.xhtml

 Table of Contents

 		
 Documentation

_static/plus.png

_static/minus.png

_static/file.png

